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The effect of the r l  perturbation of a symmetrical, conjugated bidentate ligand upon the central ion d orbital energies is described 
in a ligand-field framework. The method is based upon the symmetry-dictated orientation of the angular overlap model (AOM) 
toward a molecular orbital model. The result is, as far as geometry is concerned, that the bidentate moiety, LL, still can be 
represented by its two ligators, L. However, as far as the d-orbital perturbation energies are concerned, the usual reference to 
the symmetry C., of M(L) must be replaced by reference to the symmetry C, of M(LL). Thereby the single radial parameter 
erlr which the two ligators have in common in the conventional AOM and which is atomic in character, must be replaced by two 
independent parameters, e+L and eXL, which are molecular in character. The new radial parameters e+L and exL belong to our 
ligutor purumetrizution scheme. These parameters are closely related to the eigenenergies of two of the central ion d orbitals 
in a system containing only one bidentate moiety of the kind mentioned. In  this M(LL) system, # and x refer to the irreducible 
representations b2 and a2, respectively, of the group C, where the subindex 2 in both cases means odd with respect to reflection 
in the molecular plane of the coordinated bidentate and thereby is synonymous with the symbol I in rI. When the parameters 
mentioned are used, the bite angle of the bidentate moiety occurs in the r l  energy expressions. However, an alternative set of 
radial, molecular parameters e+LL and eXLL belong to our ligundparumetrirution scheme. These parameters are directly the two 
nonvanishing d-orbital eigenenergies of our M(LL) system. The coefficients to these parameters do not contain the bite angle. 
In this scheme a bidentate moiety behaves as a non linearly ligating unidentate ligand, situated on the C, axis of the bidentate 
ligand. With our results, a large number of metal complexes containing conjugated bidentate ligands reaching from the carbonate 
ion to 2,2’-bipyridine can now be subjected to a ligand-field description. The present problem, first addressed by Orgel, was recently 
examined by Ceulemans, Dendooven, and Vanquickenborne. They found that the problem could not be solved by using the AOM 
alone and that an extra, so-called phase-coupling term had to be introduced in connection with the # / x  separation of the ligand 
field. Our treatment does not involve any extra terms and is fully consistent with the AOM as it was originally formulated. The 
semiempirical AOM furthermore allows for gradual diminution of the delocalization or other ligator-ligator interactions within 
the bidentate ligand until the perturbations by the ligators are no longer correlated. At this point etL = e,( = (e+LL + eXLL)/2 
= e,* and the conventional AOM may be used. Conversely, the concept of individual ligator TI perturbations gradually loses 
its meaning as the ligator-ligator interaction sets in. This treatment also retains the AOM additivity and the associated sum rules 
for coefficients to the energy parameters e+LL and exLL. The analysis shows that the plus and minus combinations of these # and 
x ligand fields, associated with a single ligand LL, have effectively linear and orthorhombic symmetries, respectively. In the 
Appendix it is shown that the ligand-field approach is not likely to be useful for an unsymmetrical bidentate ligand, because this 
must involve yet another radial parameter. 

I. Introduction 
The present paper was inspired by two contributions by 

Ceulemans, Dendooven, and VanquickenbornelJ (CDV), con- 
cerned with a representation of the ligand field produced by the 
*-part of conjugated bidentate ligands. CDV aimed at adapting 
the angular overlap model (AOM) to treat the special interaction 
between central ions and ligands that occurs when these ligands 
contain a delocalized *-electron system. They concluded that it 
was necessary to introduce an extra term, a so-called phase- 
coupling term, and that the additive character of AOM had to 
be sacrificed in order to adapt the AOM to treat the ligand field 
of a conjugated bidentate ligand. Furthermore, in their conclusion, 
they used radial parameters, associated with the coordinating 
atoms (the ligators), in spite of the fact that their formalism is 
based upon a division of the conjugated ligands into classes defined 
by the symmetry of their frontier molecular orbitals rather than 
of orbitals localized on the ligators. We disagree with their 
treatment1*’ in all these points. 

The present paper is essentially limited to a discussion of 
symmetrical, conjugated bidentates LL for which the metal-bi- 
dentate ligand subsystem M(LL) has the symmetry C,. However, 
in the Appendix, we shall comment briefly on the problem of 
unsymmetrical  ligand^^*^ for which the subsystem has only Clh 
symmetry. 

We find that there is an inconsistency in the CDV formalism 
such that when this is corrected, no phase-coupling term arises 
and the additive character of the AOM is conserved, even if its 
form is slightly modified in one of our proposed parametrization 
schemes. Our radial AOM parameters are more directly conceived 
as being caused by a molecular perturber as opposed to a pre- 
ponderantly atomic one. All our symmetrical bidentate ligands 
fall into one class rather than two classes depending on fron- 
tier-orbital symmetries.’ Our approach is to go back to the 
LCAO-MO basis of the AOM through the LCAO description 
of the delocalized orbitals of the bidentate ligand and then to use 
the AOM in the way it was originally proposed. 

The AOM embodies two kinds of additivity: ligator or ligand 
additivity on the one hand and additivity of u- and r-perturbation 
contributions on the other. This paper is concerned with the first 
kind of additivity. The second kind of additivity in the AOM is 
not influenced by a reformulation of the effect of conjugation 
within the coordination sphere, and we therefore follow CDV in 
restricting ourselves to discussing r l  interactions and not in- 
cluding the stronger u interactions. We assume, at least for the 
purpose of the present paper, that these interactions can simply 
be added by using the AOM in the conventional way. [These 
interactions can be directly combined with other modifications 
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of the AOM that do not involve the TI interaction itself. For 
example, intermixing of u and *)I interactions,) which are sym- 
metry-allowed for our present ligand perturbations, can imme- 
diately be accommodated into the present treatment. Similarly, 
s-d mixing can be accommodated. However, we decline from 
discussing these modifications of the AOM here as they will 
necessarily involve extra radial parameters, which probably will 
make them impractical. In quoting work of the Gerloch group,w 
we would like to point out that although we largely agree with 
the philosophy of the cellular ligand-field model of Gerloch and 
coworkers as this has recently been expressed,' our formalism for 
the AOM presented here is differenr from that of the cellular 
model (cf. Section IIC).] 

Most of the results, which are described in detail in this paper, 
were communicated8 at the XXIV ICCC in Greece (1986) and 
at that occasion also discussed with Ceulemans of CDV. 
Moreover, at the XXVII ICCC in Australia (1989). we attended 
Ceulemans' talk9 on this very subject, and it is our impression that 
the controversies between CDV and us are by and large settled. 
However, the ligand field of bidentate ligands with ligator-ligator 
interactions,10 and particularly conjugated ones,I1J2 is an old 
probIem,I3J4 which recently has been re~onsidered.~*'~' '  We 
present here our systematic solution within the formalism of the 
AOM. 

Our paper is structured as follows. Section I1 gives an illus- 
tration of the two equivalent formulations of the AOM-that using 
the single ligator orbital overlap formulation and that using the 
group overlap formulation. Section 111, which contains the main 
body of the paper, discusses one conjugated bidentate moiety, first 
as a molecule ready for chelation and second as a ligand providing 
a ligand field described by AOM parameters. Thereafter, dis- 
cussion of the molecular orbital interpretation of these parameters 
is followed by an account of their semiempirical application. 
Finally, an analysis of the effective symmetries of the new TI 
operators is provided. Section IV contains examples of the 
practical application of the AOM beginning with a short discussion 
of the additivity formalism. The concluding section, Section V, 
summarizes the main results for symmetrical bidentate moieties, 
and the paper finishes with an appendix concerned with the 
problem of the unsymmetrical bidentate. Here we are also at 
variance with CDV.i*2 

11. Tbe Two Formulations of tbe Conventional Angular 
Overlap Model 

A. A Model-Illuminating Example. In this section, we shall 
discuss a chemical system that, from an experimental point of view, 
is somewhat artificial, but from a model-theoretical point of view 
contains everything necessary to illuminate the symmetry features 
of this paper's problem and to allow performing of a preliminary 
comparison between the present approach and that of CDV. 
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The system consists of two water molecules that act as two 
geometrically correlated non linearly ligating ligands.18 We place 
the two water molecules with all their six atoms in the ZX plane 
of a Cartesian coordinate system, the oxygen ligators being sym- 
metrically disposed about the Z axis and the central atom placed 
at the origin (1). 
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1 
Planar seven-atom molecule 

The system has the symmetry C,, and the coordinates of the 
ligating oxygen atoms O1 and O2 are (sin (8/2), 0, cos (8/2)) and 
(-sin (8/2), 0, cos (8/2)), respectively, so that the valence angle 
at M is equal to 8. This valence angle is the geometrical prere- 
quisite for the AOM calculation. We now consider the pertur- 
bation of the central-ion d orbitals associated with the pv ligator 
orbitals, pi and p;, of 0, and Oz. These orbitals are odd with 
respect to reflection in the ZX plane, a property that must apply 
also to the central ion d orbitals that are to overlap with them 
and interact with them in an AOM sense. This symmetry re- 
quirement on the d orbitals reduces the five-dimensional d space 
to a two-dimensional subspace spanned by Qz) and (xy) .  Each 
of these perturbed d orbitals transforms irreducibly under C, and 
spans bz and a2, respectively, where the subindex 2 expresses the 
fact that they are TI orbitals. 

Independently of the way in which the AOM is applied, the 
relevant theoretical quantities are the geometry-dependent 
quantities called the diatomic angular overlap integrals.I8 Here 
we only need the following four diatomic angular overlap integrals: 

(cVz)lp:)ang = +COS (8/2) 

((xY)IPj)mg = +sin (8/2) 

(Qz)IP;)ang +COS (8/2) 

((xy)lp;)ang = -sin (8/2) (1) 

They will now be used to illustrate the two f o r m u l a t i ~ n s , ~ ~ J * - ~ ~  
which are equivalent in the conventional AOM algebra and which 
may be called the diatomic-overlap formulation and the group- 
overlap formulation,21 respectively. 

B. The Formulation Based on Individual Ligator Orbitals or 
the Diatomic-Overlap Formulation. We consider the perturbing 
effect upon the d orbitals of the central atom, which arises from 
the interaction with the two py oxygen ligator orbitals. According 
to the individual ligator-orbital approach to the AOM, the energy 
matrix associated with each of these ligator orbitals must be set 
up in the same basis (and in this particular case the basis bz) (xy )  
is chosen, with the orbitals in the given order), and the total energy 
matrix is then the sum of these two matrices; Le., the perturbation 
contributions from the two ligators are additive. Each energy 
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total perturbation was expressed as a sum of terms, each term 
being associated with one particular ligator orbital. We now form 
two linear combinations of p: and p; which are symmetry- 
adaptedi3,” to the point group C, of the system. In eq 3, the C, 

0, = (P: + $)/2”’ bz(G)  

0, = (P! - $)/2’/’ a2(Cd (3) 

symmetry classification b, and a,. mentioned in section IIA. has 
becn associated with the symbols $ and x. thereby following 
Orgel,”J2 who originally put forward the qualitative LCAO-MO 
idea that inspired CDV’s papers1L9 and through these the present 
paper. Note that the orbitals of symmetries J. and x carry plus 
and minus signs, mpeciively, which meam that the two constituent 
orbitals in these equations have the same and the opposite signs 
(in-phase and our-of-phase, respectively) on a given side of the 
plane of the seven-atom molecule (2b.n). 

Z 

*LL 
*L 

b 
npaC 1. Orbitals d a t e d  with the lipnd-field TI prrturbations 
from a symmeirical, mnjupicd bidmtatc ligand. WItp a and b illustrate 
ligand orbitals that are even (x) and odd ($), respstively. with regard 
to rotation about the C, axis of the bidcntatc moiety. The x and $ 
orbitals bclong to thesymmetry species a2(C,) and b(C,). respectively. 
The left-hand and right-hand sides illustrate the symmetry orbitals of the 
ligator (L) and the ligand (LL) parametrization schemes, respeciively. 
The former scheme orbitals are out-of-phase (xL) and in-phase (+L) 
linear mmbinations of ligaior orbitals. whereas the latter (xLL and +LL) 
are x and $atomic orbitals ora non linearly ligating, unidentate ligand, 
situated on the C, axis of the bidentate moiety. 

matrix consists of the product of a matrix of angular elements 
(consisting of squares and cross-products of angular overlap in- 
tegrals) and a radial energy parameter, er1. This parameter is 
the same for the two oxygen ligators. 

The two matrices, as well as their sum, are given in eq 2 in 
units’l of e,,. Nonvanishing nondiagonal elements appear in 

Q 

cvr) 
the mstrim of the individual l i t o r  operators. but these disappear 
in the matrix sum in agrement with the above symmetry result 
that Qz) and (xy) belong to different irreducible representations 
of the symmetry group C. of the chemical system. One observes 
that the t r a m  of the indindual ligator matrices are equal to unity 
and hence that the trace of the sum matrix is equal to 2, i.e., the 
number of ligators. These sum rulesI9 are associated with the 
magnitude specification of the radial AOM parameters. 

In the following subsection, we remnsider the same chemical 
system using the alternative formulation. 

C. The GmupOverlnp Formulation or tbe Formu*Hoa Based 
lpon Ulmr C o n b i n a h  ofligatw(hbihla lllelb-x splmeby 
Clansiflcation of Ligitor Group Orbitals. In subsection B the 
antral  ion d orbitals were perturbed, according to the AOM, by 
their interaction with the two ligator orbiials p: and p: (1). The 

2a 
x symmetry I o2 symmetry 

L 

2b 

$I symmetry = bZ symmetry 
According to the symmetry-orbital form~lation’~ of the AOM, 

the energy matrix associated with each of these ligator group 
orbitals must be set up in the same basis (and in this particular 
case we choose the same basis {Qz)(xy)] with the same order of 
the functions as we did in Section IIB), and the total energy matrix 
is again the sum of these individual energy matrices. The per- 
turbstion contributions are now additive in the operators aPsociated 
with the ligator symmetry orbitals. Each of the individual energy 
matrices again consists of a matrix of angular elements (this time 
embdying squared group angular overlap integrals and their cnss 
products) multiplied by the same radial energy parameter e,, 
for both individual matrices as for the individual matrices of eq 
2. The results are given in eq 4 in units of e-,. The individual 
A 

- - 

oly) 

operators &O+) and &Ox) build the bridge toward the LCAO- 
MO model for an t r a l  ion to ligand bonding. For example, 0, 
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of eq 3 is the ligator symmetry orbital that represents half of the 
p r l  orbitals of the two ligators. This means that the ligators 
are now conceived at one time together. However, they still 
perturb the antral ion d orbitals indepndently. One may e x p  
this by saying that their perturbations are noncorrelated or 
noncoupled. These terms will be useful to refer back to when 
bidentate ligands with ligator-ligator interactions are considered 
in section 111. 0, is symmetry-compatible with the central ion 
orbital b z )  with which it makes a bonding and an antibonding 
linear combination. The first matrix on the left-hand side of eq 
4 expresses the associated antibonding energy. 

In addition to this bridging to the LCAO-MO model, the 
information of the matrices of eq 4 may be put into words as 
follows: when the r l  perturbation from two ligators is analyzed 
into a $ part and a x part, the total perturbation contains the 
fraction cosz (812) of $ character and sin’ (8/2) of x character. 

The equality of the formulations of eqs 2 and 4 is an example 
of a quite general result, which has been proved in different 
contexts18-w for the conventional AOM. 

It is seen that there are two equivalent main formulations of 
conventional AOM, one (section IIB) using the ligator orbitals 
directly and one using them indirectly by first forming in-phase 
and out-of-phase linear combinations of them. This has not been 
realized by CDV when they statel that phase relationships are 
as a matter of principle ignored in the AOM. [The situation is 
similar with Gerloch, Woolley and co-workers,M who in their 
cellular ligand-field model use our formulation based upon in- 
dividual ligator orbitals (section 11s) but as a matter of principle 
reject the molecular orbital oriented formulation (section IIC).] 
The final results of eqs 2 and 4 involve two parameters, the valence 
angle 8, which is of geometrical character, and the radial ener- 
gy-parameter e-, of the AOM. 

In conclusion. !he additive character of the cbmentional AOM 
energy operator A of our present example may be e x p d  either 
through eq 5a or eq 5b as 

ir(rl) = ir(0,) + &OZ) 
ir(rl) = A(0,) + A(0,) 

( 5 d  

(5b) 

by using either the direct (diatomic overlap) formulation (eq 5a) 
of subsection B or the indirect (group overlap) formulation (eq 
5b) of this subsection. 
D. Coinprison between the Anyhr Factors of tbe Energy 

Operator. Discussion OF tbe CDV Stntewnls about tbe AOM. 
In our example of a ligand system consisting of two coplanar water 
molecules, connected by a 2-fold axis, the symmetry is C,. This 
symmetry remains when the central atom is included. From a 
symmetry point of view, our system of metal and ligands is 
identical with a system containing a metal ion and one symme- 
trical, planar, bidentate ligand so that the p r l  orbitals of our 
oxygen ligators exactly correspond to the p n l  orbitals of the 
ligating atoms of a symmetrical, conjugated bidentate moiety. In 
fact our present example is from an AOM point of view idenfical 
with the model of the planar bidentate ligand used by CDV. This 
statement may be expressed formally by eq 6, where the left-hand 

A.*(O,) = irk&) 

A,(O,) = Ak,(X) (6) 

sides are the angular factors of the ligand-field operator for the 
two water molecules of subsection C and the right-hand sides are 
the corresponding expressions for a symmetrical, conjugated 
bidentate ligand with ligators L. The angular factors are the 
theoretical factors that are in fact symmetry-determined ($, x )  
and geometry-determined (8) (cf. eq 4). 

In their introductory remarks to their work,’ CDV apply the 
AOM by using the diatomic-overlap formulation as in our sub- 
section B. They place their ligators on the positive Xand Yaxes 
so that their valence angle 8 is equal to No. If we place the oxygen 
ligators of our HzO molecules in the same way (3a.b). our results 
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30 
x symmetry 

Z 

1 

3b 
J, symmetry 

for the n l  perturbation are, in the diatomicmverlap formulation, 
given in eq 7 where the unit of energy is again the radial parameter 
e.l. 

A 

(=) 
W) 

Comparing our result of eq 7 with that of CDV (the relevant 
part of their eq I),  we observe that the angular factors are identical 
and this is true for the results altogether except that we denote 
our radial parameter e,, as is usual in the AOM while CDV call 
their parameter rl. So we conclude that our e,, is identical with 
their n,. 

We now apply the groupoverlap formulation using the setup 
of 3. Our results are given in eq 8, again in units of er1. In 

agreement with the conclusion of the preceding subsection (ex- 
pressed by eq 5a.b) the two different formulations, eqs 7 and 8, 
provide identical angular matrices (the right-hand sides of eqs 
7 and 8). 

If the two terms on the left-hand side of eq 8 are compared 
with eqs 3a and 4 of CDV, respectively, it is immediate that the 
angular factors of CDV are twice as large as ours. This olwer- 
vation may be expressed by eq 9, where V($) and V(x)  are the 

V,($) = 2ir*,,J($) 

V*,(X) = 2jl,,(x) (9 )  
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CDV expressions for the $ and x oprator terms when the radial 
parameters are included. 

Since CDV’s eq 1 agrees with the AOM while CDV’s eqs 3a 
and 4 do not and since the basis of the statements made by CDV 
about the AOM is a mmparison of their three equations, (I). (3a). 
and (4). all the CDV statements about the AOM should be ex- 
amined most carefully. We shall return to a further comparison 
with CDV in section HIE. 

In section IVB, we shall refer back to eq 8, which represents 
the situation of 3. If 0, is left on the positive X axis but 0, is 
moved to the negative Y axis, then the only consequence is that 
the cocfficient matrices on the left-hand side of eq 8 become 
permuted. 
Ill. An Example of a Symmetrical, Conjugated Bidentate as 
a Central-Ion Perturber 

A. Tbe ligand Ready for Cbehtion. Ligna $ and x Orbitah 
The following discussion will reveal that, for the understanding 
of the fundamental concepts, it is useful to think about an example 
of a symmetrical. conjugated bidentate moiety before it is actually 
coordinated. We discuss in detail the CDV example of the diimine 
N~’dimethylglyoxa1diimine (see 4) and add some brief mmments 
on the acetylacetonate ion. The following symmetry character- 
ization is common to all symmetrical, conjugated bidentate 
moieties. 

The set of p*l orbitals of the ligand-backbone atoms in the 
planar conformation (when the ligand is ready for chelation) span 
a reducible representation of the point group C, of the system 
which invariably contains irreducible species of only bz and a2 
types. These irreducible types are called for short $ and x. 
respectively (cf. eq 3 and 2). 

We here add subindex numbers on the linear combinations of 
atomic p n l  backbone orbitals of $ and x types so that the 
subindices equal the number of nodal planes prpendicular to the 
backbone. We note that the number of nodes of this type is even 
for $orbitals and odd for x orbitals. Within a given ligand the 
orbital energies are expected to increase with the number of nods. 

A simple notation is obtained by first pairing the symmetry 
related atomic p n l  orbitals. With an obvious notation exem- 
plified by the diimine orbitals (4), we obtain 

P = (N, + N2)/Z1l2 

$C = (C, + C’)/21/’ 

xc = (C, - C2)/2‘/2 

xN = (Nl - N2)/2’/’ 

(10) 
In terms of these symmetry orbitals, the ligand eigenorbitals can 
quite generally be written as in eq 11 within the wonly LCAO 
model (leaving out the renormalization factors, which arise from 
the overlap of the atomic orbitals). 4 gives an illustration of these 
orbitals when u and u are both in the interval [O; (n/2)]. 

x ,  = xN sin u - xc cos u 

$’ = sin u - cos u 

xI = xN cos u + xc sin u 

$o = $N cos u + $C sin u (11) 
The diimine is in the r-only model a four-electron-four-orbital 

ligand, and if the energies increase with the number of nodes, xI 
of 4 is thmforc its HOMO and $2 its LUMO so that the diimine 
may be classified as a x(HOMO)$(LUMO) ligand. 

The discussion of the four-electron-four-orbital ligand can be 
generalized to other cases. For example, acetylacetonate, or a 
pdiketonate in general, has a six-elearon-fiveorbital conjugated 
system, which by symmetry contains three +type and two X-type 
orbitals. Under the assumption that the energy increases with 
the number of nodes. $, is the HOMO and x, is the LUMO, so 
that the Miketonate may be classified as a $(HOMO)x(LUMO) 
ligand. 
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B. Interactinn between Central Inn d Orbitals and L i e  $ 
and x Orbitals. Adaptation of the Angular Overlap Model. We 
now apply the AOM using the group-overlap formulation of 
section IIC. In the present case, the number of ligand orbitals 
that may interact with the central ion orbitals excads the n u m b  
of ligators. This is a new feature that we have to accommodate 
into the AOM. For the diimine case there is a set of four orbitals 
(eq 11  and 4) to consider, two of which replace the interaction 
from 0, and two others which replace that from 0, of section 
IIC (cf. also eq 6).  

It is instructive to begin this discussion under the unrealistic 
restriction that the ligand orbitals all have the same energies. In 
this event, the energetic effect upon a metal d orbital arising from 
the interaction with each of the ligand orbitals will be proportional 
to the square of its group angular overlap integral with the same 
constant of proportionality. Let us use the coordinate system of 
2 and exemplify the situation by considering the interaction energy 
between the central ion orbital lyz) and the ligand orbital $2 of 
4. One only has to consider the overlap between l yz)  and the 
ligator orbitals contained in $’. Using eq 11, one has 

(lyz)l$d = ( lyz)lP sin u )  = (ly~)l$~) sin u (12) 

This means that the overlap ( ( V Z ) ~ $ ~ )  obtains an extra-AOM 
factor of sin u and the squared overlap accordingly a factor of 
sin2 u, but otherwise the situation is the same as in the first matrix 
of eq 4; i.e., the interaction energy is 2 cos’ @/2) sin’ u eZl. $,, 
behaves analogously, except that its extra-AOM factor is cos v 
in overlap and cos’ u in interaction energy. Each one of these 
squared factors represents in this restricted model a fraction of 
the total $ perturbation. 

The analysis of the x perturbation is analogous, xI contributing 
the fraction cos’ u and x, the fraction sin’ u to the total x per- 
turbation. In this unrealistically mtricted model, which is a model 
of a nonconjugated yet planar bidentate ligand, the same radial 
parameter applies to all four perturbations, two of # type and two 
of x type (4). 

In conclusion, in the particular example, N,”-dimethyl- 
glyoxaldiimine has two orbitals within each of the classes $ and 
x. where the important point is that the members within each 
orbital class have the same symmetry. According to the AOM 
additivity principle (square and add), the different orbitals, for 
example, $o and $’ of 4, give perturbation energy contributions 
proportional to their percentage content of P and likewise xI and 
x, give contributions roportional to their percentage content of 

We now remove the restrictive assumption that the ligand 
orbitals all have the same energy; Le., we allow for conjugation 
or other kinds of ligator-ligator interactions.’0 This has no 
symmetry consequences and the re fowas  we shall -for our 
discussion.of the semiempirical model no consequences at all. 
However, conceptually, different radial parameters now have to 
be used for different ligand group orbitals. Reconsidering the 
interaction between lyz) and the $orbitals, we may now combine 
the trigonometric, always posiliue, squared extra-AOM factors, 
discussed iust above. with the radial factors e(&,) and e(hC.). which 

xN, where $N and x J are defined in eq 10. 

now are iifferent. ‘The AOM factor 2 c d T p / 2 )  wifstill be 
common to $’ and $,,,and we may for the diimine rewrite eq I2 
as 
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(wI&+)Iw) = 2 cos2 (sin2 eU2) + cos2 e($o)) 

(13) 
= 2 cos2 ( 8 / 2 )  e p ~  = ~ + L L  

In this equation and in the following we have replaced N by L 
in order to emphasize the generality. With reference to the 
discussion immediately after eq 11, e($2) < 0 and e($o) > 0. 
Analogously, we obtain 
( ( X Y ) I ~ X ) I ( X Y ) )  = 2 sin2 (8 /2 )  (sin2 u 4 x 3 )  + cos2 u e ( x l ) )  

(14) 
where e(x3)  < 0 and e ( x l )  > 0. 

The results of eqs 13 and 14 are the final results of our ad- 
aptation of the AOM to treat a symmetrical, conjugated bidentate 
LL as a ligand. The results are formally identical with those for 
the two water molecules of eq 4, apart from the fact that the 
perturbations of + and x types have their own radial parameters 
epL and exL in eqs 13 and 14 whereas in eq 4 they have the same 
radial parameter erL. The ligator radial parameter e,, of the 
M(OHJ2 case is, in the AOM, associated with the preponderantly 
atomic orbital p of the ligator 0 as discussed in section IIC, and 
we therefore ca6 it an atomic radial parameter. As opposed to 
this situation, each of the ligator parameters epL and exL is as- 
sociated with molecular orbitals, and we therefore call these pa- 
rameters molecular radial parameters even though they are in- 
dexed by the ligating atoms. Moreover, the parameters e), and 
exL are accumulative in being associated with several molecular 
orbitals of the ligand. If the r-delocalization and other ligator- 
ligator interactions could be gradually made to vanish, then the 
molecular radial parameters epL and exL would, independently of 
their original signs, converge toward having the same sign and 
magnitude and thereby become the atomic radial parameters e,, 
of the conventional AOM.I3 

Equations 13 and 14 define not only the radial parameters epL 
and exL of what we would like to call our ligator parametrization 
scheme but also the two additional radial parameters epLL and 
exLL of our ligand parametrization scheme. These parameters 
are purely symmetry-based and, of course, also molecular in 
character. In addition, they have the property of individually 
referring to the whole ligand in the special sense that the trace 
of the angular factor of the energy operator representing a whole 
bidentate ligand over d space is unity for both of them. The 
concepts of Iigaror and ligand parametrization schemes are based 
upon the origin of the coefficients to the associated parameters, 
which make up the theoretical part of the semiempirical AOM. 
epL and exL of the ligator scheme have coefficients that are based 
upon group angular overlap integrals, which are linear combi- 
nations of ligator angular overlap integrals. As will be further 
discussed in the following sections (see, for example, Figure 1) 
epLL and exLL, conversely, have coefficients that are based upon 
diatomic angular overlap integrals of a non linearly ligating, 
unidentate ligand whose perturbation within the model is identical 
with that of the whole bidentate ligand. These coefficients will 
turn out to depend on the position and rotational orientation of 
the bidentate moiety but not on the positions of its ligators. In 
a semiempirical use of the AOM, epLL and eqLL are the most 
relevant TI radial parameters, as discussed in subsection D. 

The AOM formalism leads to the result that the perturbation 
associated with all ligand eigenorbitals in which the ligator orbitals 
arc in phase must be described by one accumulative parameter 
e+L (or eSLL) and the perturbation associated with eigenorbitals 
in which the ligator orbitals are out ofphare by another parameter 
e L (or exLL). This fact suggests retaining the CDV model wording 
of phase coupling of ligators in order to express the consequence 
of conjugation or other ligator-ligator interactions on the AOM 
ligand-field description. This concept of phase coupling was also 
adopted by Atanasov, Schonherr, and Schmidtke.I5-I7 

C. Interpretation of the Radial Parameters in the Molecular- 
Orbital-Oriented Version of the Angular Overlap Model, The 
discussion of the preceding subsection revealed that the usual 
molecular-orbital orientation of the AOM, illustrated in section 

= 2 sin2 (8 /2 )  exL = eXLL 
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IIC as the group-overlap formulation, could be extended quite 
naturally to apply also to symmetrical, conjugated bidentate 
ligands. The number of perturbing orbitals increases from two, 
which is the number of ligators, up to the number of atomic p r l  
orbitals of the ligand, but the effective AOM perturbation falls 
invariably into only two symmetry types $ and x (eq 3). It is the 
total perturbation within each symmetry type that counts in an 
AOM sense. Now, the angular factors of the AOM, Le. the 
coefficient matrices, whose elements consist of squares and 
cross-products of group angular overlap integrals, are the same 
for all contributions within each symmetry type, but different for 
the two symmetry types. These coefficient matrices are those of 
the conventional AOM, provided that this is expressed by using 
the group overlap formalism (section IIC, eq 4). 

We now discuss by way of examples the expected signs of the 
radial parameters associated with the individual orbitals of the 
conjugated ligands and include qualitative remarks about their 
expected relative magnitudes. 

In the diimine case (eq 11 and 4), we expect the two occupied 
orbitals $o and x I  to be lower in energy than the central ion d 
orbitals while the empty orbitals $2 and x3 have higher energies. 
Under this assumption the radial parameters e ( h )  and e (xJ  are 
positive while e(&) and e(x,) are negative. Since x 1  is the HOMO 
and $2 the LUMO, the radial parameters associated with these 
two orbitals are expected to dominate the issue so that the di- 
imine-in a net energetic sense within each of the two symmetry 
classes $ and x-becomes a x donor and a $ acceptor. 

In a *-only LCAO-MO model of a conjugated bidentate ligand, 
situations with an even and an odd number n of atomic TI orbitals 
often differ energetically in an essential way. It is instructive to 
compare two systems of this kind for which n = 2m and 2m + 
1 and the number of electrons is 2m and 2m + 2, respectively. 
The diimine and the &diketonate, respectively, exemplify the two 
possibilities for m = 2. In the diimine case, two orbitals are 
stabilized to accommodate the four electrons and two orbitals are 
destabilized. In the /3-diketonate case, there are also two orbitals 
that are stabilized to accommodate four electrons and two empty 
orbitals of higher energy. However, in this case, we are still left 
with one orbital to accommodate two electrons. This orbital is 
nearly nonbonding and this is what makes the essential difference, 
because this filled orbital may come close to the central ion d 
orbitals in energy. Even though this model is crude, it may still 
qualitatively account for the empirical indication that the 8-di- 
ketonate is a net A donor (the nonbonding orbital +2 is slightly 
lower in energy than the d orbitals, while x 3  is much higher in 
energy than the d orbitals because of its conjugation destabili- 
zation). On the other hand, the diimine could from this point of 
view be either a net ?r donor or a net r acceptor (see the next 
paragraph though). 

It will be interesting to see to what extent these predictions of 
the present model will be borne out by experiment in the future. 
Here, we only point to the fact that the ligand cyanide has an 
unusually high value of A = A, - A, in octahedral d6 systems.u 
A possible explanation for this is that the A,, parameter for CN- 
is negative in spite of the fact that other evidence would classify 
CN- as only a weak *-acid. If this explanation of the high A value 
for CN- nevertheless is right, then CN- may exhibit an illustration 
of a large energetic effect upon central atom d orbitals caused 
by even a weak *-acceptor interaction. This could well be a 
general phenomenon that would turn up also in the case of con- 
jugated bidentates and perhaps cause the diimine ligands to be- 
come net ?r acids in this particular energetic sense (though not 
necessarily also in a net electron population sense). In this con- 
nection, we would like to point out also that the unidentate non 
linearly ligating ligand pyridine has been foundz4 to have an e,, 
parameter which is slightly negative when the central ion is 
chromium(II1). This result has given rise to some discussion.’.x 

(23) Josephsen, J.; Schiiffer, C. E. Acra Chem. Scad. 1977, A31,813-824. 
(24) Glcrup, J.; Msnsted, 0.; SchBffer, C. E. Inorg. Chem. 1976, IS, 

(25) Smith, D. W. Inorg. Chem. 1978, 17, 3153-3156. 
1399-1407. 
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D. Use of a Semiempiricnl Angular Overlap Model To Represent 
the Ligand Field of a Conjugated Bidentate Ligand. In the pre- 
ceding subsection, the interpretation of the individual parameters 
of the ligator parametrization scheme of eqs 13 and 14 was 
discussed qualitatively by using the molecular orbital orientation 
of the AOM, referring to the parameters e+L and exL. In the most 
common application of the AOM, however, the model is used 
quantitatively as a semiempirical model, i.e. by taking its coef- 
ficient matrices as the theoretical part of the model and using its 
radial parameters to express its empirical part.27 

The AOM operator, representing a sy_mmetrical,conjugated 
bidentate moiety, is give? by replacing A(O+) and A(Ox) in eqs 
4 and 5b by A($)  and A ( x )  of eqs 12 and 13 (see also eq 6). 
Comparison of these two terms with the two terms on the left-hand 
side of eq 4 reveals that they are formally identical apart from 
the fact that eqs 13 and 14 contain the two different radial pa- 
rameters, and exL. The geometrical prerequisite for the use 
of the parameters eSL and exL is the polar coordinates of the two 
ligators. These coordinates, of course, imply the bite angle j3. 
When the bidentate moiety is in a general position relative to the 
coordinate frame defining the d basis, the sum rule for the 
coefficients to each of the parameters e+L and exL is that the 
coefficient sum is 2 cos2 ( 0 / 2 )  for e+L and 2 sin2 (0/2) for exL 
so that the sum of the coefficients to the parameters describing 
the total TI perturbation from the bidentate LL is 2, i.e. equal 
to the number of ligators of this bidentate. 

The interpretation of eqs 13 and 14 in terms of the ligand 
parametrization scheme has special importance for the use of the 
model semiempirically since the model in this scheme requires 
one fewer geometrical parameters (the three Euler angles of the 
C2 axis of the bidentate moiety as compared with the four polar 
coordinates or its two ligators) and still only two radial parameters 
(e+LL and exLL). The reason is that in this scheme the knowledge 
of the bite angle 0 is no longer a geometrical requirement. [The 
discussion about whether or not the bite angle j3 is an AOM 
prerequisite is somewhat academic. It is certainly true that 
knowledge of 0 is unnecessary for setting up the energy matrix 
in the radial parameters eSLL and exLL. However, in th,e practical 
use of the AOM, it will be necessary to account for A(a) in the 
first place; then the coordinates of the ligators are necessary.] 

In order to calculate the AOM angular factors of the parameters 
e+LL and eXLL for a bidentate ligand LL, in a general position, the 
angular coordinates of the C2 axis of the ligand and the orientation 
of the ligand about this axis make up the geometrical knowledge 
required. This is the same as knowing the Euler angles’* of the 
C2 axis. If the planar ligand is placed in the ZX plane with its 
C2 axis coinciding with the 2 axis of the Cartesian coordinate 
system according to which the d basis is defined, then its $ orbitals 
only overlap with the d m  (=(yz))  orbital, while its x orbitals only 
overlap with the d6s ( = ( x y ) )  orbital. Thus a $ orbital of the 
bidentate behaves as a particular one of the T orbitals of a non 
linearly ligating ligand, while a x orbital behaves as a particular 
6 orbital. 

The symmetries of the perturbing and the perturbed orbitals 
may be seen in Figure 1, where the molecular character of the 
perturbing orbitals is also illustrated. 

Although in a semiempirical model, one is bound to accept the 
parameter values determined from experimental data, it is still 
allowed, and hopefully chemically useful, to ponder about the 
values of such parameters both before and after they have been 
obtained from the data reduction of the experimental results. For 
a general symmetrical bidentate LL, we would like to comment 
on the magnitudes and signs of the radial parameters. First, since 
the radial parameters eSLL and exLL are molecular, it is not correct 
to make the usual and probably usually justified conclusion for 
atomic parameters that le,l > leal. The signs may also vary for 
e LL and eXLL types of parameters and an individual sign may be 
ckanged by varying only the central ion, for example from a 
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reducing one to an oxidizing one as in the case of the two d6 
systems manganese(1) and cobalt(II1). Second, eSLL and exu need 
not resemble the eTl values found for the ligating atoms L in other 
chemical surroundings. For a series of ligands, all containing 
nitrogen ligators, it is likely that both positive and negative values 
of e+” and ex” type parameters will be found to occur. 

Unfortunately, it is rather much to have to determine two 
empirical TI parameters for one bidentate ligand, whose con- 
tributions to the ligand field are already dominated by a large 
value for its Q parameter. There is, however, no way out of this 
dilemma, which is a common one when ligand-field theory is 
applied to interpret experiments on low-symmetry systems. There 
is a special feature here: when the parameters e+LL and exLL. have 
been obtained from experiment, e+L and exL will not immediately 
be known. However, if the additional geometrical knowledge of 
the bite angle 0 is available, eqs 13 and 14 allow the determination 
of epL and exL. In the special case where 0 = 90° we have the 
following two identities. 

eSLL = eSL eXLL = exL for j3 = 90° (15) 

For the parameters e+LL and exLL the sum rules of the con- 
ventional AOM apply, when it is remembered that a bidentate 
ligand behaves as one non linearly ligating ligator. Thus, for 
example, the sum of the coefficients to exLL over the five d orbital 
energies is equal to the number of bidentate LL moieties present 
in the coordination sphere rather than the number of ligators. 

We now discuss the case of a planar, bidentate ligand without 
ligator-ligator interactions using eqs 13 and 14. This case includes, 
of course, the planar bidentate ligand without conjugation. In 
this case, eSLL and eXLL could in principle be determined exper- 
imentally from spectral data, where they invariably should be 
found to have the same sign and to obey eq 16, as derived from 

tanZ (8/2) = ~ , L L / ~ J . L L  ~ J . L  =  ex^ (16) 

combining eqs 13 and 14 under the condition eSL = exL. From 
eq 16, the bite angle j3 might be determined from spectral data 
by using the AOM. However, the most characteristic feature here 
is the condition itself, which allows eSL and eFL to be denoted by 
the common symbol erlL. as in the c~nven t iona l~~  AOM. For 
independently perturbing ligators we therefore have the equalities 

(17) eSL = e X l  = ~ , L L  = ( ~ S L L  + ~ , L L ) / Z  

where the last one was derived by addition of eqs 13 and 14. For 
the special case of j3 = 90°, one has for the ligand without liga- 
tor-ligator interactions the combined results of eqs 15 and 17: 

erLL = = exLL = e+L =exL for 0 = 90’ (18) 

In section IV examples will be given to illustrate the additivity 
of perturbations when more bidentate moieties are present in a 
coordination sphere and to exemplify the AOM calculational 
approaches to conjugated, bidentate ligands when the two different 
formulations of eqs 13 and 14 are used. 

E. A Second Comparison between Our Approach and That of 
Ceulemans, Dendooven, and Vanquickenborne. In the previous 
subsections the AOM was adapted to discuss the problem of a 
ligand-field representation of the interaction between a metal ion 
and a symmetrical, conjugated bidentate ligand. The result was 
that the formulation of the AOM of eq 5a, based upon inde- 
pendent, individual ligators, no longer applies and in this point 
we agree with the conclusion of the CDV paper.’ We also agree 
with Orge111v’2 and CDV1*2 that subdivision of ligand orbitals into 
a $ type and a x type (cf. eq 3) is now the important issue, but 
while we use this classification to introduce the concepts of rC, and 
x perturbations through the use of the AOM, CDV1s2 consider 
the classification alien to the AOM (cf. section IIC). Ceulemans, 
and Vanquickenborne ia ref 9 do not seem to retain this view, 
however. 

In formulating the basis of their model, CDV assume that a 
ligand can be considered as either of $ type or of x type depending 
on the symmetry of a particular one of its frontier orbitals. Once 
this either/or idea has been introduced, CDV make the assumption 

( 2 6 )  Gltrup, J.; Msnstcd, 0.; Schlffer, C. E. Inorg. Chcm. 1980, 19, 

( 2 7 )  Schilffer, C. E. Srrucr. Bonding (Berlin) 1973, 14, 69-1 10. 
2855-2857. 
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that the trace of the a l  perturbation energy matrix, corresponding 
to one bidentate ligand (Le. two ligators) and being set up in a 
d basis, is equal to 21r, where a, is their notation for the usual 
AOM radial parameter e,, referring to one ligator. This means 
that the angular factor of their 171 perturbation operator has a 
trace of 2, and this is plausible because it means on their premises 
that one bidentate perturbs as much as two ligators. However, 
this is still where the CDV treatment is at variance with the AOM 
because of the above-mentioned either/or situation (see also the 
discussion in section IID and eq 9). While in the CDV model 
the ligands are either $ type or x type perturbers so that one 
bidentate ligand gives only one of these contributions, in our model 
they are fundamentally both $ and x perturbers so that one 
bidentate moiety must give both a $ and a x contribution (even 
though one of these contributions might incidentally turn out to 
be small). [This is the situation that is advocated by Schiinherr, 
Atanasov, and SchmidtkeI6 in connection with their analysis of 
tris(acety1acetonate) complexes. For these systems they put e, 
(their e',,) equal to zero (see our discussion in section IIIC). In 
this connection we want to make two points, both regarding the 
concept of a non-additive ligand field: (1) Atanasov et al. 
characterize their phase-coupling formalism, which is equivalent 
to our formalism (cf. Section IIIB), as their nonadditive model, 
thereby taking over this term from CDV. The term is only valid 
as far as individual ligator perturbation contributions are con- 
cerned. However, the conjugation imaged by the phasscoupling 
prevents these individual contributions from being identifiable and 
thereby additive. (2) The use of the concept nonadditive is 
moreover unfortunate because the concept of nonadditive ligand 
fields28*29 already has been used in the literature as referring to 
the situation in which the total ligand field of a chemical species 
is parametrized by using parameters based alone upon the sym- 
metry of this species.] Therefore the TI perturbation operator 
of our bidentate (given by eqs 5b and 6) has angular factors whose 
traces add up to 2. 

Moreover, while the radial parameters in the CDV m0del'+'9~ 
have a character that we call preponderantly atomic, which means 
related to the properties of the ligating atom, just as in the con- 
ventional AOM, those in our model are molecular in character. 
It is important in this connection to note that this molecular 
characterization applies independent of whether the radial pa- 
rameters are of the ligand parametrization scheme (e.g. e+LL) or 
of the ligator scheme type (e.g. e+J. The values of our parameters 
are expected to depend on the whole ligand backbone including 
the ligators and on the central ion. This is evident from the way 
they were derived (subsection B). 

With regard to the semiempirical application of the CDV model 
and our model, a further important difference appears. While 
in the CDV model each symmetrical bidentate moiety has one 
a I  parameter either of e*N type or of eXN type, in our model such 
a perturber has to have two al parameters, e+N and eXN, which 
have to be considered as independent empirical parameters. 

In illustrating their model by applying it to various ligand 
systems, CDV later in their paper' gave a discussion that we have 
appreciated, and our previous discussion of the present section 
is indebted to them. At this stage of the CDV paper,' the ligands 
appear, however, no longer to be either $ or x perturbers, but 
rather to be both $ and x perturbers, which is just the way we 
find it necessary to conceive them. Thereby, this conceptual 
discrepancy between CDV and us vanishes even though the as- 
sociated, numerical discrepancy'2 consisting of the factor of 2 in 
the formalisms remains (cf. eq 9). 

Because of this discrepancy in the formalisms, the two modi- 
fications of the AOM, that of CDV and ours, give completely 
different comparisons with the conventional AOM. CDV are able 
to write 

YAOM = (W$) + Y(x))/2 (19) 
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so that YAoM is the arithmetric mean of their +b and x perturbation 
operators. However, the condition for eq 19 (Le. eq 5 of CDV' 
compared with our eqs 6 and 5b, where A ( ~ r l )  is our AAoM) is 
that the radial ligator parameter of the AOM is also the parameter 
of both Y($) and Y(x). CDV put emphasis on the consequence 
of eq 19 that the factor of breaks down the additivity of AOM 
and makes it necessary to introduce an extra-AOM term, a so- 
called phase-coupling term, denoted by Y*w, which does not 
appear in our formalism. 

In conclusion, the CDV',' model for symmetrical bidentate 
moieties is in itself, Le., without regard to its relationship with 
the AOM, mathematically equivalent to our model, provided 
independent radial parameters are used for Y($) and Y(x). 
However, the relationship between the CDV model and the AOM 
is unnecessarily complicated, and moreover, since the CDV model 
was presented as a modification of the AOM that had to be drastic, 
we have found it useful to pinpoint the lack of logic in the way 
the CDV modification of the AOM was made and at the same 
time, more constructively, show how simply the AOM can be 
adapted to become a consistent model for the TI perturbation 
of general, planar symmetrical bidentate moieties. As a final 
remark here, we need to mention that the discrepancy of the factor 
of 2, mentioned above, has been removed in ref 9. 

In the next subsection, we shall discuss the formal relationship 
between our model for Ir-conjugated systems and the conventional 
AOM. In this discussion the question about additivity within the 
AOM will also be answered. 
F. The Angular Overlap Model for a Symmetrical, Bidentate 

Ligand with Ligator-Ligator Interactions. It is not possible to 
give an explicit relationship between the conventional AOM o g  
erator for the present systems and the operator developed in this 
paper. 

The reason for this impossibility is that the conventional AOM 
involves only one TI parameter while our present model involves 
two radial parameters. However, since the theory part of the 
semiempirical AOM is concerned with coefficients to the pa- 
rameters rather than the parameters themselves, it is possible to 
write for a symmetrical, bidentate ligand 

(20) 
and refer to eqs 4 and 6, as well as to the angular parts of eqs 
13 and 14. The use of the subindex ang on all the perturbation 
operators corresponds to its use in eq 1 and means that we are 
concerned only with the angular factor in the operators. Equation 
20 needs to be qualified by the remark that our total TI operator, 
Le., the operator including its radial dependence, is no longer 
separable into a product of an angular and a radial factor but has 
to be written as the linear combination 

&$M(r~)  = A,L,($) + 2ng(x> 

i r ( I r l )  = A($) + A(x) 
= e$Lirhg($) + e,Lirk@(x) (21) 

This expression is in its formalism not at all alien to the AOM 
since it is analogous to, for example, the expres~ion '~* '~ 
2 ekiang(.) + eAang(m) + eAang(*c) + edAmg(W + 

edang(6c) (22) 
or, for a linear M-L system 
ir = e,,Aang(g) + e,[A,,(rs) + ir,(~c)] + 

ed[&mg(6s) + Aang(6~)1 (23) 
However, the symmetry-required necessity for two radial pa- 

rameters in eq 21 increases the requirement for information 
content of the experiment from which values of the radial pa- 
rameters are to be obtained. 

The general values of the traces as well as of the lengths3b32 
of the two operators of eq 20 are 2 cos2 (/3/2) and 2 sin' (/3/2), 

(28) ScMffer, C. E. Waue-Mechadc-The First Fvty Years; Rice, William 
C., Chisick, Seymour S., Ravensdale, Tom, Us.; Butterworths: Lon- 
don. 1973: Chanter XII. DD 174-192. 

(30) Schiiffer, C. E. Physica 1982, I l I A ,  28-49. 
(31) Schiiffer, C. E. Understanding Molecular Properties; Avery, J., et al., 

Us.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 
1987: DD 143-175. 

(29) Schaffer, C. @.-Theor. Chfm. Acta (Bcrlin) 1974, 34, 237-243. 
rr 

(32) Benix, J.; Schiiffer, C. E.; Brorson, M. Coord. Chem. Reu. 1989, 94, 
181-241. 
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respectively, so that only the sum of their traces makes up the 
invariant, which is equal to the number of ligators of the system 
under consideration (cf. eq 4). So the intraligand sum rule as- 
sociated with eq 21, which represents our adapted AOM, is to 
a certain extent analogous with those of eq 22, which represents 
the conventional AOM. These sum rules are closely connected 
with the question of additivity. In our adapted AOM, there is 
no longer the concept of the perturbation from the individual 
ligators of the conjugated bidentate moiety, and the question of 
the additivity of these perturbations is therefore not appropriate. 
However, the two ligators ofJhis bidentate moietxare together 
represented by the operator A ( r l )  of eq 21, and A $ M ( a l )  of 
eq 20 has a trace of 2 when acting on a set of d functions. Only 
when the ligator-ligator interactions become vanishingly small 
and eq 17 applies, do the conventional AOM and the adapted 
AOM become indistinguishable. 

The analogy with eq 22 is complete when & r l )  is written 
out in terms of our radial parameters esLL and eXLL as in eq 24 

(24) 

since both angular operators on the right-hand side of eq 24 have 
a trace and a length3b32 of unity. 

In the following subsection we shall analyze the symmetry 
properties of the operator of eqs 21 and 24. 
C. A Symmetry Analysis of the r l  Perturbation Operator. 

In the last 20 years, symmetry-hierarchic studies of additive13 as 
well as nonadditive3b32 ligand fields have perhaps made up the 
main progress in ligand-field theory and in the use of symmetry 
in chemistry. We shall now give a symmetry-hierarchic analysis 
of the operators describing the TI perturbation of the planar, 
symmetrical bidentate. 

We consider the ligand parametrization scheme first. We 
rewrite eq 24 as 

& r ~ )  = ik&~s(+) e+LL + J,L,Lx) eXLL = 
rc&c+, + Ak$X))/2’/21 [ (es t t  + exLL)/21/21 + [(.ik$+> 

&*I) = esLL 4$+> + eXLL %$x) 

- A,L,(x))/21/2] [(esLL - exLL)/21/2] = d,L,LS+etL + A&-eiL 
(25) 

whose last expression is an abbreviated notation for the operators 
and parameters given in square brackets earlier in eq 25. 

The matrix analogue of eq 25 using the function basis ((yz)(xy)] 
and referring to the bidentate moiety spanning the Z axis as in 
Figure 1 is 
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tions, the new angular operjators must be proportional to the 
angular operators A ) ,  and A:&-, respectively, and we take them 
to be identical. Equation 27 will thereby be rewritten as 

A ( r l )  = Ak$et + Akk-4 (28) 

Combining now eqs 25,26, and 28 and using again eqs 13 and 
14, one obtains 

e t  = etL = (esLL + exLL)/21/2 

ei = eiL = (esLL - exLL)/21/2 

= 21/2 cos2 (@/2) esL + 2112 sin2 (@/2) exL 

= 21/2 cos2 (@/2) esL - 21/2 sin2 (@/2) exL 
(29) 

Held together with eq 26, eq 29 shows that A ( r l )  can be analysed 
as consisting of the sum of an energy shift of the set ( (yz)(xy))  
of cos2 (/3/2) esL + sin2 (@/2) exL and a baricentered energy 
splitting contributing cos2 @/2) esL - sin2 (@/2) e to (yz )  and 
the same quantity with opposite sign to (xy). For tfie special case 
of @ = 90°, the shift is (esL + exL)/2 and the splitting is esL - 
exL as also found by Ceulemans and Vanquickenborne? When 
the ligator-ligator interactions become vanishingly small so that 
eq 17 is valid, the shift will be equal to the single ligator parameter 
e,, and the splitting equal to 2 cos 0 e,, in agreement with eqs 
4 and 6. If, moreover, 0 = 90°, the splitting will vanish and the 
holohedrized symmetry20v22 of A ( r l )  for one planar ligand will 
be Ddh (or, effectively Dmh). This is in agreement with the 
Ceulemans and Vanq~ickenborne~ statement. 

The conclusion therefore is that in the general case (Le. when 
/3 # 90’) both the effectively linear and the orthorhombic terms 
(with radial parameters of e+ and e- type, respectively) are linear 
combinations of esL and exL with @-dependent coefficients. 
IV. The Additive Model for r l  Perturbations from Two or 
More Conjugated Bidentates. Examples of Bis(bidentate) 
Square Planar, Tris(bidentate) Octahedral, and Bis(bidentate) 
Tetrahedral Complexes 

A. Application of the Additive Model. In the following we 
present a short illustration of our model by considering certain 
simple systems consisting of combinations of identical bidentates 
LL. These systems have high symmetries and occur frequently 
in chemistry. 

In the preceding part of this paper, we have only included 
explicitly those d orbitals of the central ion that are perturbed 
by the interaction with the r l  orbitals of the conjugated bi- 
dentate. If the rest of the d orbitals are included, the energy matrix 
A L L ( A ~ )  of the ligand field of a bidentate LL moiety, whose C2 
axis is along the Z axis and whose molecular plane (including the 
central ion) is in the ZX plane, has the following expression 

ALL(WL) (1’) Cvz) (1x1 ( X Y )  (x2 -Y ’ )  

t-0 o 0 0  0 1  
where eqs 13 and 14 have provided the numerical results. Equation 
26 contains the following symmetry analysis of the ligand par- 
a-metrization scheme: the-basis functions are eigenfunctions of 
A ( r l )  and the operator ALL+ produces an equal energy shift of 
(yz) and (xy) just as an operator of linear symmetry about the 
Y axis would do. So, effectively, the model operator ALL+ behaves 
as if it had &h symmetry with the Y axis-i.e. the axis perpen- 
dicular to the p l p e  of the bidentate moiety-as the C, axis. On 
the other hand, ALL- produces a barycentered splitting of (yz) and 
(xy )  and behaves as an operator of D2h symmetry with the 
Cartesian axes as C2 axes, 

For the symmetry comparison between the conventional AOM 
(esL = exL = e,,) and the AOM adapted to account for liga- 
tor-ligator interactions, one has, however, to use the ligator 
parametrization scheme. 

This can be done by defining the new radial parameters e t  and 
e i  of eq 27, by letting them refer to angular operators of Dmh and 

A ( r l )  = AkGet + (27) 

D2h symmetry, respectively. Because of these symmetry restric- 

(30) 
In the ligand parametrization scheme (eqs 13, 14, and 24), 

which uses the ligand radial parameters esLL and exLL, the gec- 
metrical prerequisite is the direction of the C2 axis of the bidentate 
moiety and the orientation of its molecular plane referred to the 
coordinate system defining the d orbital basis. In the ligator 
parametrization scheme, which uses the ligator radial parameters 
esL and exL of eqs 13, 14, and 21, the geometrical prerequisites 
are the ligator polar coordinates, which also imply a knowledge 
of the bite angle 8. The main parametrical difference between 
the two schemes is that this bite angle occurs explicitly in the 
energy matrices when the ligator parametrization scheme is used 
(see eq !). 

The A(a) perturbation is not the subject of the present paper. 
It can be handled by using the conventional AOM. Two closely 
related points should be noted, however. The coordinates of the 
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ligators are the geometrical prezequisites of the conventional a ( u )  
calculation and for the present A(7r l )  calculation when the ligator 
parametrization scheme is used, while the coordinate system having 
the Z axis as the C2 axis of the bidentate and the ZX plane as 
its molecular plane must be chosen as the frame when the ligand 
parametrization scheme is used. 

Once all these matters concerning the individual bidentates have 
been clarified, it has to be borne in mind that the XYZ coordinate 
system referred to is a local one from the point of view of the metal 
complex to be handled by the model. The ligand field arising from 
each bidentate moiety will thus %t this stage be represented by 
its energy matrices of A(a)  and A ( x l )  in their own particular 
local d bases. Therefore, in order to obtain the expression for the 
total additive field, Le., the field representing the sum of all the 
contributions from bidentate moieties plus any monodentate 
moieties present, one has to transform all these matrices into some 
common basis, which one might call the global basis.32 In order 
to do this, the conventional f ~ r m a l i s m ' ~ ~ ' ~  is completely adequate. 
This will now be illustrated for a few systems containing only 
bidentate moieties. 
B. A Bis(bidentate) Square-Planar Complex. In this and the 

following subsection, we assume that the bite angle @ of our 
bidentate moieties is equal to 90°. Thereby eqs 13 and 14 imply 
that both angular and radial factors of the perturbation operators 
are the same for the ligator and the ligand parametrization 
schemes (cf. also eq 15). 

We start out from the ligator scheme in the present example. 
The p7r orbitals are numbered and given with signs in 5 and will 
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39 is equivalent to eq 7 of Atanasov et a1.,15 who see it as a 

A(J-24) = A(W) + A(X) = 

'/2(ex3 + ev;, '12(exL - evL) (39) l 1  /2(e,3 - evL) 92(exL - evL) I 
consequence of a three-center interaction. These authors use the 
notation em and em, for the parameters e*L and exL, respectively, 
of our ligator parametrization scheme. Equation 39 is also 
equivalent to eq 2 of ref 9. 

= exL, Le., for independent 
ligators L2 and L4, the matrix of eq 39 is diagonal. The new 
feature of the AOM, adapted to the bidentate situation, may in 
the particular case, @ = 90°, considered by Ceulemans and 
Vanquickenborne: be conceived as the nondiagonal element of 
eq 39, which is nonvanishing when ligator-ligator interactions are 
present and which mixes (zx) and (yz). The removal of degen- 
eracy associated with this mixing may be thought of as being due 
to a phase coupling of the ligators through the backbone of the 
bidentate moiety or due to direct bonding/antibonding ligator- 
ligator interaction causing the J ,  and x linear combinations of 
ligator orbitals (cf. eq 3) to interact to different extents with the 
central ion d orbitals. This view matched the intuitive background 
of previous  paper^.'^^.^^'^ The analysis of sections IIIF and IIIG 
shows, however, that the consequence of ligator-ligator interactions 
for 6 # 90° cannot in a natural way be separated out. 

For use in the following section, we note that the eigenfunctions 
of A(L2L4) of eq 39 and their associated eigenvalues are as given 
in eqs 40 and 41. 

[(zx) + @ ~ ) ] / 2 ' / ~  = exL (40) 

[(zx) - ( y ~ ) ] / 2 ' / ~  = (41) 

In order to use the ligand parametrization scheme, we need to 
view the central ion from the 2-fold axis of L2L4, Le. from x = 
-y and z = 0, and to replace the bidentate ligand by a nonlinearly 
ligating, unidentate ligand as described in section IIID and il- 
lustrated by Figure l ,  where a different coordinate frame is used. 
The eigenvalues for the eigenfunctions of eqs 40 and 41 are eXLL 
and eqLL, respectively. 

The coefficients to corresponding ligator and ligand radial 
parameters, e.g., e p  and e$LL, are the same when @ = 90' (cf. 

We are left with the problem of adding the perturbation con- 
tribution from the ligand LlL3 (5). However, by the inversion 
symmetry of the central ion d orbitals, the eigenfunctions of the 
perturbation from LlL3 and their associated eigenvalues are the 
same as for L2L4. Therefore, we only need to change the coef- 
ficients to exL and e$L of eqs 40 and 41 to 2 instead of 1 in order 
to obtain the final result for the bis(bidentate) complex. 

It is too early at the stage of this paper to discuss the actual 
values of our present empirical parameters since comparison of 
the model with experiments is a major effort in itself. However, 
we believe it is useful to consider the consequences of some relative 
values of the parameters e+L and exL that are qualitatively in 
agreement with our theoretical discussion of section IIIC. We 
choose for the diimine ligands 

In conventional AOM, where 

eqs 13-15). 

e$NN = -5 eXNN = -2 (42) 

e"5 e x m = - 2  (43) 

and for the @-diketonate ligands 

both choices illustrating the prospect of having negative radial 
parameters corresponding to the d orbitals becoming bonding 
rather than antibonding. Furthermore, the @-diketonate choice 
illustrates the possibility of having the two new parameters of e,, 
type appear with different signs. 

The important energy quantity, which is the experimental 
consequence of the TI perturbation in the bis(bidentate) case, 
is the splitting of the orbital set ((zx)(yz)l. For this splitting Ah, 
we have according to eqs 40 and 41 and including the factor of 

Z 
1 

5 

be denoted by uI, u2, u3, and u4 where 7r2 is connected with u4 
by the backbone of one of the bidentate moieties L2L4 and 7rl with 
7r3 by that of the other moiety LlL3. 

We consider the perturbation from L2L4 first. It is immediate 
on inspection that the following equations are valid: 

((~x)la2)ang 1 (31) 

((zx)l~4)ang = 0 (32) 

(Cyz)I*4)ang = -1 (33) 

(@z)l*Z>ang = 0 (34) 

((zx)l+)ang = ((zx)1(*2 + *4)/21/2)ang = 1/21'2 

(Cyz)I$')ans = (CyZ)l(7r2 + *4)/2'/*)a,g = -1/2'12 

(35) 

(36) 

and the matrix of A(+) in the basis ((zx)(yz)] is 

Similarly, the matrix of A ( x )  is found to be 

As was already mentioned in the last paragraph of section IID, 
A,*($) and A,,&) of eqs 37 and 38 are permuted relative to the 
situation of 3 and eq 8 where the bidentate moiety spans the 
positive X and Y axes. 

In the ligator parametrization scheme, we obtain from eqs 37 
and 38 directly our present AOM expression for the TI per- 
turbation energy matrix of the bidentate L2L4 moiety. Equation 
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2 because of the two bidentate moieties 
Ah = 2e+L - 2eXL (44) 

which shows that the most pronounced experimental effects of 
the r l  perturbation from conjugated ligands in the present planar 
complexes are expeaed when o p p i t e  signs of the r l  parametem 
occur, as possibly happens in the case when the bidentate moiety 
is a @-diketonate (eq 43). 

C. A Tris(bident.te) Octahedral Complex. We assume again 
that the bite angle @ of the bidentate is 90°. We use the setup 
of Q and 6b, which illustrate the symmetries x and +, respectively, 
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purposel'-as (46) in order to associate it with the ligand L2L+ 

cvz) [ 11: ;'Iz] (46) 
(=) - 12 12 

The corresponding d basis for the two other bidentates can be 
obtained by cyclic permutation13 of x, y, and z. Thus we obtain 
the following expressions: 

k$(v)  cvz) (4 

A&k(V) (zx) (v) 

jlL$(W) (xu) cvz) 

(=) [ 11; ?Iz] (47) 
( X Y )  - 12 12 

(v) [ 11; -'"I (48) 

The matrim (46H48) consist of coefficients to the same radial 
parameter e,, = e,,, where the equality is valid because @ = 90° 
(cf. eqs 12-14), and this parameter will be denoted by e,. 

By the use of eq 45, the combined information of (46)-(48) 
may be written 

CVz) - 12 'I2 

((vz)lA(J.)lCvr)) = ((zx)lA(J.)l(zx)) = 

(Olr)lA(J.)l(zx)) = ((ZX)IA(J.)l(X~)) = 

((XY)IA(J.)l(XY)) = e* 

((x~)lA(J.)l(vz)) = - (1/2)eq (49) 

The three single-ligand matrices of A&) are identical with 
those of (46)-(48) apart from the fact that the nondiagonal el- 
ements have o p i t e  si@ (cf. eqs 37 and 38). Therefore for A(x), 
we have 
( ( Y ~ ) l ~ ( X ) l W )  = ((zx)lir(x~l(zx)) = 

(cvr)lir(x)l(zx)) = ((zx)lir(x)l(xYp = 

((xY)I&x)I(xY)) = e, 

((xy)lA(x)ICyr)) = (1/2)ex (50) 

Our eqs 49 and 50 are equivalent to eq 8 of Atanasov et al.15 apart 
from their inclusion of the sc-c+lled r(( ~ r t ~ r b a t i o n . ' ~  

Since the eigenfunctions of A(+) and A(x) must be tg(Oh) 
functions, they are completely determined by symmetry!' in our 
present tris(bidentate) system of symmetry D3. apart from the 
freedom associated with the degeneracy ta(Oh)e(D,) and the free 
choice of sign (phase). 

If the group hierarchy Oh 3 D, 3 C2 is used to break the 
degeneracy freedom for the eigenfunctions, the following functions 
are the fully specified ones, including a convention for choosing 
the phases:'! 

t% = b S ( ~ . d e ( ~ M C 2 )  = [old + (zx) - ~ ( X Y ) I / ~ ' / ~  

6 8  = tz8(oh)e(&)b(cz) = [(ZX) - b'Z)1/2"' 

'T, = t & A ) a l ( 4 ) a ( C ~ )  = [(vr) + (2x1 + ( X Y ) I / ~ ~ / '  (51) 
From these eigenfunctions together with eqs 49 and 50, the r l  

perturbation energies h may be found to be 

WJ = h@!,) = (3/2)e+ + W 2 k X  

h(t&) = Oe, + 2ex (52) 

The quantitative result of eq 52 needs go" further comments: 
the average. perturbation energy of the three t,, orbitals, the .energy 
shift, is e, + e,. This is the cubic part8 of the perturbation A ( r l )  
of eq 45. The sum of the coefficients in each energy expression 
of eq 52 is 2 and this number, multiplied by 3 (because of the 
three orbitals), equals the number of ligators. The energy dif- 
ferences between the e(DJ and a!(&) split components are 
(3/2)el. and -(3/2)ex for the J .  and the x terms. The total trigonal 
splitting is 

60 
x orbitols 

6b 
(I orbitals 

of the r l  orbitals of the three bidentate moieties bL4, L&, and 
L,L,. which lie in the Xu, YZ, and ZX planes, respectively. Our 
problem can be formulated as follows 
i r ( n l )  = irh4(rl) + A L q r l )  + ALIb(*$)  

= A'++) + A'+x) + AL34(J.) + AL3h(X) + 
ALILS(J.) + irL'"(X) 

(45) 
= A(+.) + &x) 

Equation 45 shows in algebraic language what 6a and 6b depict: 
the total r l  perturbation from the three bidentate moieties can 
be conceived as a sum of a + and a x contribution, each of these 
contributions consisting of three terms corresponding to the three 
bidentate moieties. This result is analogous to the general result 
of the AOM that the perturbation from a whole coordination 
sphere can be written as a sum of a u perturbation, a r pcrtur- 
bation, and perhaps more te11ns.I~ 

Before considering the r l  perturbation, we note that the six 
r l  ligator orbitals by holohedrizationm* comprise all of the 12 
possible ligator r orbitals of the octahedron, which span t18 tB ta 
tB tlu tB t,,,. Since e, is not among these irreducible representations, 
we conclude at the outset that the space of d orbitals that may 
be perturbed by the r I  orbitals of a tris(bidcntate) ligand system 
with @ = 90° is limited to dtz8 or, in other words, to the orbitals 
bz) ,  (zx), and (xy), referred to a global coordinate system with 
the axes coinciding with the C4 axes of Oh. 

Knowing this, we now begin by considering the + perturbations 
and, in particular, that from the bidentate moiety LZL+ The 
coefficient matrix is already given in eq 37, but it is repeated 
here-with the orbitals in the natural order for the present 
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0) - Ma,) = 0/2)@+ - e,) (53) 

showing that the splitting is zero in the conventional13 AOM (cf. 
eqs 17 and IS), in which case the total perturbation gives rise to 
the energy shift 2e., (eq 52). Equation 53 shows that especially 
large splitting effects are expected when e, and e, have opposite 
signs. For Schhherr et al.” it was enough to put e, equal to zero 
in order to explain the large trigonal splitting of ‘T2&4) in the 
tris(acetylacetonato)chromium(lII) complex, which is found in 
spite of the fact that the ligators of this complex are almost 
octahedrally disposed about their central ion (cf. also eq 44). 

D. A Bb(bidentpte) Tebabedml Complex. As our last example, 
we study a system where two bidentate moieties bite over the edges 
of a regular tetrahedron, which means that the bite angles B are 
equal to the tetrahedral valence angle B(TJ = 109.47O. or cos 
[@(Td)] = -(1/3). According to eqs 13 and 14, we therefore have 

e,LL = (2/3)e+~ 

e,LL = (4/3)e,~ (54) 

In l a  and 7b are seen the x and fi ligand symmetry orbitals, 
respectively and also the Cartesian coordinate system (the global 

70 
x orbilols 

7b 
a) orbilols 

system) that is used to &f ie  the set of real central ion d functions. 
In this example the local coordinate systems for the ligand par- 
ametrization scheme may be chmen to haw their axes coinciding 
with those of the global system (cf. also Figure 2). 

We consider this parametrization scheme first since it is p r -  
ticularly simple here. Since the Z axis is the 2-fold axis of both 
bidentate moieties, these will, when acting as non linearly ligating 
unidentate ligands LL. perturb d r  and d8 orbitals referred to this 
axis. We shall in fact be able to obtain all our results in this 
scheme by inspection rather than algebra. 

The x pnturbations will be amsidered first. For each bidmtate 
acting as a unidentate ligand, the x perturbation is associated with 
the xLL orbital, which is odd with respect to reflection in both 
planes of symmetry of the bidentate moiety. The situation is 
illustrated for the top bidentate on the upper left of Figure 2, so 
that the Z axis is the C, axis of the bidentate moiety and comes 
up through the centroid of the tetrahedron with its direction 
perpendicular to the plane of the paper. The xLL orbital is thus 
centered on the positive Z axis. This xLL orbital matches the 
central ion d(x’-?) orbital (not shown) perfectly so as to give 
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X x 
Top bidentote x orbitals Top bidentote $I orbitals 

Bottom bidentate x orbitals Bottom bidentote JI orbitals 
Figure 2. Orbital perturbcrs of the bis(bidentate) tetrahedral eomplex. 
seen from the S, axis. The two upper parts refer to the top bidmtatc 
moiety and the two lower ones to the bottom bidentate moiety. The 
left-hand side illustrates x orbitals; the right-hand side illustratcs $ 
orbitals. In all of the parts. the orbitals aswciated with both ligator and 
ligand parametrization schema of the AOM have b a n  drawn. The 
former orbitals are linear combinations of the ligator orbitals of 8 whose 
cceflicient signs are given by the shading. The latter orbitals are x and 
J. atomic orbitals of a non linearly ligating, unidentate ligand, situated 
on the C, axis common to the two bidentatcs. They have been denoted 
by xLL and $LL. 

an angular overlap integral of unity between the two orbitals and 
a perturbation of e,, on d(x’ -3). The lower left of the figure 
shows that the bottom bidentate moiety also produces a x per- 
turbation of eXLL on d(x’ - y’). We thus have 

h(x* - y*) = h(bJ = 2exLL = (8/3)e,~ ( 5 5 )  
where a notation of the fact that the irreducible representation 
bl is spanned by d(x* - 3) in Ow is contained. 

Next we consider the fi perturbations. For each bidentate 
moiety the fi perturbation can be regarded as associated with a 
non linearly ligating unidentate ligand fiLL orbital that is even 
with respect to reflection in the plane perpendicular to the mo- 
lecular plane of the particular bidentate. The fiLL orbital for 
the top bidentate (the upper right part of Figure 2) matches the 
central ion d orbital [ b z )  - (zx)]/2l/* perfectly to contribute the 
perturbation energy e,, by its interaction with this orbital. 
Similarly, the fiLL orbital of the bottom bidentate moiety matches 
[(zx) + @ ~ ) ] / 2 ~ / ’  perfectly to give it also the energy e,,,. The 
final result hy using also eq 54 is then 

h ( u )  = h(yz) = h(e) = etLL = (2/3)eqL (56) 

since (zx) and bz )  span e(Dw). 
The energies of eqs 55 and 56 are the splitting energies of the 

central ion orbital sets de(Td) and db(Td). resptively. Therefore, 
in this m e  of a “tetrahedral bisphenoide” system, the two indc- 
pendent n l  perturbation parameters, exLL and e,,, can in 
principle be determined on the hasis of spectral splittings. Un- 
fortunately, the interpretation of d-d  spectra of tetrahedral 
complexes has not been so successful as that of m h e d r a l  ones.” 

(33) Rdsfeld, R: Chrmiak, V.; Epl. M.; J8gm&n. C. K. Chem. Phys. Lnr. 
1989. 161.307-312. 



2852 Inorganic Chemistry, Vol. 30, No. 14, 1991 

We now outline the results of using the ligator parametrization 
scheme on our bis(bidentate) system. Placing the ligating atoms 
of the top bidentate in the directions Ll( l , l , l )  and L2(-1,-1,1) 
and with the positive lobe of their PAL orbitals in the direction 
(1,-l,O), and the ligators of the bottom bidentate in the directions 
L3(l,-l,-l) and L4(-l,l,-l) and p n l  direction (l,l,O) (8), one 
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and using eqs 56 and 60, one obtains 

h*,(t2) = (2/3k+LL (65) 

so that eqs 62,64, and 65 provide our expression for the AI part 
of the tetrahedral field 

A,, =  ex^^ - ( 2 / 3 ) e + ~ ~  (66) 

Equation 66 shows that the synergistic influence of the J, and x 
perturbations affect the tetrahedral part of the ligand field rather 
than the part that splits the tetrahedrally based subshells (cf. eqs 
55 and 56). As usual, this synergism happens when e+LL and eXLL 
have opposite signs (cf. eqs 39, 44, and 53). 

V. Conclusion 
The *I perturbation of a symmetrical bidentate is in con- 

ventional AOM parametrized13 by the radial parameter e,,, which 
refers to the indiuidual ligating atoms. This parameter may 
therefore be said to be preponderantly atomic in character even 
though the values of e,, are found to be somewhat different for 
different ligands containing the same ligators. 

Conjugated bidentate moieties, for which this conventional 
AOM is known from comparison with experiments not to work, 
were treated here by using the usual molecular orbital orientation 
of the AOM. Since the ligators of conjugated bidentates interact 
with each other through the backbone of the ligand, the values 
of the AOM parameters depend on the extent of the interaction 
or, rather, on its energetic consequences on the central ion d shell. 
In this sense, the present radial parameters are essentially mo- 
lecular in character. The analysis concludes that the e,, pa- 
rameter of the conventional AOM has to be replaced by two 
independent parameters in the adapted AOM. These parameters, 
e+ and ex, correspond to in-phase and out-ofphase combinations 
of ligator *I orbitals, respectively. This division is symmetry- 
based and the ligator-orbital linear combinations fall into a J, and 
a x class also in conventional AOM. The new issue here is that 
the ligator-ligator interactions are accounted for by associating 
different parameters with each of the two classes. 

Two equivalent parametrization schemes, a ligand scheme and 
a ligator scheme, have been devised. In the ligand scheme a 
symmetrical, conjugated bidentate moiety behaves as a non linearly 
ligating unidentate ligand, located on the 2-fold axis of this bi- 
dentate and perturbing one d r  orbital of the d* set (the J, per- 
turbation) and one d6 orbital of the d6 set (the x perturbation), 
where the A and 6 symmetry designations refer to this 2-fold axis 
as if it were a C, axis (cf. section IIID). Both of the perturbed 
d orbitals have the plane of the bidentate as a plane of antisym- 
metry. In the ligator parametrization scheme, the perturbations 
are associated with ligator group orbitals of symmetries J, and 
x .  The AOM formalism is retained unchanged, provided its group 
overlap formulation is used (section IIC). 

Since the present AOM formalism for symmetrical bidentate 
moieties is symmetry-based, it applies also to situations where the 
ligator-ligator interactions of the model are caused by direct 
antibonding-bonding interactions between the two ligators of the 
bidentate ligand. This type of interaction was qualitatively 
considered by Jsrgensenlo many years ago. 

If two or more bidentates, conjugated or nonconjugated, are 
present in a coordination sphere, their perturbation contributions 
are additive as is usual in the AOM. Moreover, for extra uni- 
dentate ligands, the usual additive character of the AOM is re- 
tained. 

The ligand fields of many ligands in the forefront of science 
at this are embodied in the present adapted AOM. 
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has a Td system of ligators. The four ligator PAL orbitals 
transform under Dzd as a2 @ bl @ e among which only the two 
latter symmetry species are also represented by the central ion 
d orbitals, and in fact b, is represented by (x2 - y2) and e by the 
set [(zx)(uz)) (cf. also eqs 55 and 56). The linear combination 
of ligator r l  orbitals of bl symmetry is here of x type while those 
of e symmetry are of J, type. The two kinds of linear combinations 
are illustrated in Figure 2. The relevant group angular overlap 
integrals are given in eq 57. 

bl(D~d) ( ( x 2  - v ~ ) I ~ / ~ [ ( * I  - *2) + ( ~ 3  - r4)I )ang = (8/3)'12 

e,(Dd ((zx)I -t /z[(~i + *2) + ( ~ 3  + ~4)l)ang = (2/3)'12 

e,,&) (CVz)I%[(*I + 372) - ( ~ 3  + ~4)I)ang = (2/3)'12 
(57) 

The results of eq 57 are in agreement with eqs 55 and 56. This 
example of a "tetrahedral" bis(bidentate) system has thus illus- 
trated our general result that one may use either the ligand or 
the ligator parametrization scheme. 

We finish this example of a "tetrakedral" complex with a 
symmetry analysis and n?te again that A($) acts only on part of 
the t2( Td) subshell and A(x)  only on part of the e( Td) subshell. 
In fact the two operators are responsible for the splittings of the 
subshells as we have already seen in eqs 56 and 55. What we still 
need to discuss is that the total AI perturbation has a term of 
tetrahedral symmetry. 

The usual definition of the parameter A for a regularly tetra- 
hedral complex is 

This definition can be carried over to our present complex of 
symmetry D2,, by writing as follows: 

Here the bars mean averaging within the orbital sets in parentheses 
so that 

(60) 

(61) 
In the present paper only the AI perturbation is under consid- 
eration, and we may therefore use the second kind of additivity 
of the AOM to define the parameter Awl, which describes the 
part of the rL perturbation that has regular tetrahedral sym- 
metry. The definition has to be 

(62) 
where the sign is based upon the usual definition 

(63) 
Using eqs 55 and 61, one obtains 

A h(t2) - h(e) (58) 

h(t2) = li(t2) h(e) = &e) (59) 

Nt2) = [h(XY) + W z )  + h(zx)l/3 
&e) = [h(z2)  + h(x2 -y2)]/2 

4, = h,,(e) - h,,(t2) 

A = An - A, 

h,,(e) = e X ~ ~  (64) 
(34) Meyer, T. J. Acc. Chem. Res. 1989,22, 163-170. 
(35)  hausz, E.; Fcrguwn, J.  Prog. Imrg. Chem. 1989, 37, 293-390. 
(36) De Armond, M. K.; Myrick, M. L. Acc. Chem. Res. 1989,22,364-370. 
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Appendix. Note on the Ligand Field Arising from 
Coordination of an Unsymmetrical, Planar, Conjugated 
Bidentate Moiety 

The TI perturbation from an unsymmetrical, planar, conju- 
gated bidentate moiety LL’ can be treated analogously to that 
of a symmetrical one by using the methods of the present paper. 
If the plane of the ligand is chosen to be the ZX plane, then again 
the TI orbitals of the bidentate overlap only with the d orbitals 
b r )  and (xy ) .  However, because of the loss of the 2-fold axis 
of the bidentate moiety, a phase-based classification of the ligand 
TI orbitals into II, and x no longer coincides with different 
symmetry species. In other words, both + and x orbitals are 
A”(CIh), where CIh is the point group defined by the central ion 
and the planar unsymmetrical bidentate ligand. Therefore, (yr) 
and (xy)  will in general nojonger be eigenfunctions in an AOM 
sense, and the matrix of A ( ? r l )  will contain a nonvanishing, 
nondiagonal element so that its form will be 

64 (xv) 
(67) 

where e+LLJ, exLL,, and ehLL, are independent, radial parameters 
to be found empirically. 

We have already mentioned that the numerical values of the 
independent parameters e+LL and exLL, required in the case of a 
symmetrical bidentate moiety, will not be easy to obtain from 
spectral and magnetic data. This, of course, will be even more 
true when yet another parameter has to be extracted from ex- 
periment. 

We want to further comment on the three independent pa- 
rameters in the energy matrix (67). The sum of the squares of 
the elements of a matrix is invariant to a unitary transformation. 
Therefore, this sum is for the matrix (67) independent of the way 
in which LL’ is placed within the ZX plane. However, this is not 
true for the individual parameter values. There will certainly be 
a placement of LL’ for which the nondiagonal element ehLLt will 
be zero, but this placement is not determined by symmetry and 
therefore will remain unknown until a full parametrical analysis 
of experimental results has been made on the basis of an arbitrarily 
chosen placement. Therefore, there will always remain three 
independent empirical parameters even if one of them may be 
chosen as an angle’ instead of an energy parameter. 

Our conclusion is that there is little hope that an AOM 
treatment of an unsymmetrical conjugated bidentate will be useful. 
Therefore, regarding this type of ligands, the implications of the 
CDV work’J and especially that regarding parametrization of their 
perturbation by only two parameters, should be reexamined 
carefully. 
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A solution NMR study performed on [PtCl,(ethambutol)] [ethambutol = N,W-bis( l-hydroxy-2-butyl)ethylenediamine] has shown 
that the nitrogen substituents [CH(CHzOH)(CHzCH3)] conform themselves so as to direct the least bulky side (the tertiary 
hydrogen atom) toward the cis chlorine ligand, and this appears to be the most compelling steric requirement. As a consequence, 
the hydroxymethyl and ethyl radicals (R) are directed one inward and the other outward with respect to the chelating moiety. 
The radical directed toward the chelate ring deeply interacts with it, and as a consequence, the methylene protons of this radical 
exhibit, in the NMR spectrum, a diastereotopic splitting the average value of which is 0.45 ppm in the case of hydroxymethyl 
and 0.80 ppm in the case of ethyl. 

Introduction 
The stereochemistry of complexes with chelate ligands has been 

widely investigated in the past. As far as the chelate ring of 
ethylencdiamines is concerned, it has been found that this is 
markedly puckered in an essentially strain-free structure.’ In 
solution, by internal rotation, the skew conformation of the N- 
C-C-N chain can change to another skew form, which is a re- 
flection of the original; as a result of this process axial bonds are 
transformed into equatorial bonds and vice versa so that, on the 
average, the chelate ring is coplanar with the coordination plane 
and the substituents on the chelating moiety are equally displaced 
above and below this plane. 

Another feature of the complexes with N-substituted ethyl- 
enediamines is that, in the solid state, the N substituents are 

rotated in such a way as to direct the least bulky side toward the 
cis metal ligand, and this appears to be the most compelling steric 
requirement.* The present investigation has shown that the same 
situation occurs also in solution and it brings about very peculiar 
and noticeable features. 
Results and Discussion 

Ethambutol is a symmetrically substituted ethylenediamine 
[N,N’-bis( 1 -hydroxy-2-butyl)ethylenediamine] and can be syn- 
thesized in three isomeric forms having absolute configurations 
R,R, S,S, and R,S at the asymmetric carbons. It has a tuber- 
culostatic activity and has been in clinical use since the mid-I960s? 

Optically pure isomers of the diamine were prepared by the 
method of ref 3, and by reaction with [PtC12(DMS0)2], in 
methanol, the complexes [PtC12(ethambutol)] were obtained in 
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